

Novel agents for the treatment of CML

Mario Tiribelli

(Division of Hematology - Udine)

Disclosures Mario Tiribelli

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis					х	х	
BMS					х		
Incyte					х	х	
Jazz Pharmaceuticals					х		
АОР					х		
Abbvie					х		
GSK					х	х	

Agenda

- Do we really need novel drugs in CML?
- Novel agents
- Combination therapies
- Old drugs, new doses
- Something even older...

Agenda

- Do we really need novel drugs in CML?
- Novel agents
- Combination therapies
- Old drugs, new doses
- Something even older...

CML survival over time – Italian RWE

OS according to first line TKI

Giai V et al., Cancer 2025

Calculate your life expectancy

Your average life expectancy is **85 years**

However there's a chance you might live longer...

- Median age at CML diagnosis in the Western countries is 60-65 yrs
- In the U.K., a 60-yrs old male is expected to live up to 85
- → Median OS: 25 yrs
 5-yrs OS ≈ 95%
 10-yrs OS ≈ 89%

UK Office for National Statistics (ons.gov.uk - access 13/08/25)

Do persons with chronic myeloid leukaemia have normal or near normal survival?

Tomas Radivoyevitch¹ · Davis Weaver² · Brian Hobbs¹ · Jaroslaw P. Maciejewski¹ · Rudiger Hehlmann³ · Qian Jiang⁴ · Andreas Hochhaus⁵ · Robert Peter Gale⁶

- Unselected cases from US SEER dataset
- CML patients in the US have a 2.38fold (95%CI 1.70-3.07; p < 0.0001) higher risk of death than controls
- Possible explanations: lower access to, compliance with and monitoring of TKI-therapy compared to clinical trials (and data from Europe?)

Radivoyevich Tet al., Leukemia 2020

Incidence of A/BP at diagnosis

European experience on advanced phase CML

Registry of almost 3,000 CML patients treated with TKIs in European countries

Diagnosis in AP = 3.5% and in BP = 2.2% (according to ELN criteria)

5-yrs OS: ≈70% in AP, ≈35% in BP

Lauseker M et al., AJH 2019

Risk of progression under TKI therapy

Hehlmann H, Blood 2012

Does frontline use of 2G-TKIs prevent progression? **«conflicting» results**

5-year risk (ITT) n

Dasa vs Ima 12 vs 19

Nilo vs Ima 10 vs 21

(rare in low risk)

	CML related deaths						
	IMA total deaths: 86/607 II-TKI total deaths: 32/670						
	Stayed on IMA	Switched to other	Stayed on II-TKI	Switched to other			
	8/58 (14%)	3/28 (10%)	1/15 (7%)	11/17 (65%)			
Total CML-rel	11/86	(13%)	12/32	2 (37%)			

Hochhaus A et al., Leukemia 2016 Cortes Jet al., J Clin Oncol 2016

Giai V et al., Cancer 2025

Do patients who fail TKIs really have a **«good»** prognosis?

German CML-IV study

- Patients not reaching 10%
 BCR::ABL1 at 12 months had
 a 10-year OS of about 55%
- ➤ 10-year survival of patients failing >1-10% at 24 months was around 60%
- Censoring for switching therapy did not change the results

Lauseker M et al., Leukemia 2023

The long and winding road to TFR

Zackova D et al. Leukemia 2024

Survival according to causes of death

Hehlmann H et al., Leukemia 2017

Undoubtedly, C
 now approache

 Prognosis of ad CP (≈5%) is still

Patients «heavi

 Sustained TFR I life-long TKI the

n the TKI era and

or evolution from

nferior OS most will receive

Agenda

- Do we really need novel drugs in CML?
- Novel agents
- Combination therapies
- Old drugs, new doses
- Something even older...

Olverembatinib

- Preliminary favorable safety profile
- Highly potent against *BCR::ABL1*^{WT} and *BCR::ABL1*^{T315I} mutant kinases
- Significant antiproliferative activity in engineered cells with *BCR::ABL1* compound mutations

Ren X, et al. J Med Chem. 2013

Olverembatinib Demonstrates Efficacy versus Best Available Therapy in Patients with Tyrosine Kinase Inhibitor-Resistant Chronic Myeloid Leukemia in Chronic-Phase in a Registrational Randomized Phase 2 Study

Jiang Q, et al. ASH 2023

Study Design

Key study criteria

- Adults with CP-CML
- **Resistant/intolerant to** I, D, and N
- ECOG PS ≤ 2
- Adequate organ function
- **Excluded pts had** conditions complicating TKI treatment

Olverembatinib 40 mg QOD, n = 96HQP1351CC203 (NCT04126681)

Randomized 2:1

 $N = 144^{*}$

Best Available Therapy n= 48

Primary Endpoints:

Event-free survival ***

Primary Endpoint:

- Event-free survival (EFS): the time from randomization until an event occurs
- Event: no CHR within 3 cycles, loss of achieved CHR, MCyR or CCyR, disease progression, death from any cause, unacceptable toxicity, whichever comes first

Jiang Q, et al. ASH 2023

^{*2} patients in BAT group had been randomized successfully but not dosed.

^{**} BAT includes interferon, hydroxyurea, and homoharringtonine or TKIs I, D, and N and combinations

^{***} Cross-over from BAT was allowed after meet the event criteria

Patients Petients Patients Pat

September 29-30, 2025

Original Investigation

Olverembatinib After Failure of Tyrosine Kinase Inhibitors, Including Ponatinib or Asciminib

A Phase 1b Randomized Clinical Trial

Elias Jabbour, MD¹; Vivian G. Oehler, MD²; Paul B. Koller, MD³; et al

Olverembatinib in CML or Ph+ ALL resistant or intolerant to at least 2 TKIs.

Random assignement to 30, 40, or 50 mg of olverembatinib every other day in 28-day cycles. 60 patients (75%) experienced at least 1 treatment-related AE; 32 (40%) experienced grade 3 or higher treatment-related adverse events; and 12 (15%) experienced treatment-related serious adverse events, none of which were fatal.

Frequently reported (10% or more) treatment-emergent adverse events included elevated blood creatine phosphokinase (all grades, 31 [39%]; grade 3 or higher, 10 [13%]) and thrombocytopenia (all grades, 23 [29%]; grade 3 or higher, 14 [18%]).

CML patients: CCyR occurred in 31 of 51 patients (61%), MMR in 25 of 59 patients (42%).

Cytogenetic and molecular responses were similar in patients with or without T315I variants.

Prior ponatinib: 15 of 26 (58%) achieved CCyR, and 11 of 30 (37%)) achieved MMR.

Prior asciminib: 4 of 8 (50%) had CCyR, and 4 of 12 (33%) had MMR.

Jabbour E et al., JAMA Oncol 2025

ENABLE: A Phase 1a/1b Study of ELVN-001, a selective active site inhibitor of BCR::ABL1, in patients with previously treated CML

	KIT	FLT3	PDGFRB	VEGFR2	SRC
ELVN-001	>10,000	>10,000	>10,000	>10,000	>10,000
Ponatinib	30	3.8	89	4.8	630
Nilotinib	200	>10,000	720	2,900	>10,000
Dasatinib	0.6	>1,000	7.1	>1,000	10
Bosutinib	1,000	4,700	7,900	>10,000	16

Fold-Shift in In Vitro Cellular Phosphorylation IC₅₀ vs. pCRKL in a Panel of Receptor Tyrosine Kinases¹

	T315I	M244V	A337T	E355G	F359C	F359V	P465S
Asciminib	96	611	173	>2380	>2380	>2380	>2380
ELVN-001	4	2	1	4	3	2	2
Dasatinib	2935	2	1	3	4	2	2
Bosutinib	113	3	1	4	5	5	4
Ponatinib	3	2	1	3	5	5	2
Imatinib	>20	3	1	8	18	10	4
Nilotinib	>341	2	1	5	33	21	3

Fold-Shift Inhibitory Activity vs. Unmutated BCR::ABL1 in a Panel of BCR::ABL1 Resistance Mutants In Vitro (BA/F3 Cells)¹

ENABLE: A Phase 1a/1b Study of ELVN-001, a selective active site inhibitor of BCR::ABL1, in patients with previously treated CML

Key eligibility criteria:

- · Chronic phase CML
- Failed, intolerant to, or not a candidate for available therapies known to be active for treatment of their CML
- Typical or atypical transcripts

Phase 1b Dose Expansion n = 20 each

Phase 1b doses selected based on safety, tolerability, anti-CML activity, and PK/PD 80 mg QD
Non-T315I

Completed Enrollment

60 mg QD
Non-T315I

Randomized (Enrolling)

Dose TBD
CP-CML with
T315I mutations

Primary Endpoints

 Incidence of DLTs, AEs, clinically significant laboratory and ECG abnormalities

Key Secondary Endpoints

- Molecular response by central qPCR
- PK parameters

ENABLE: A Phase 1a/1b Study of ELVN-001, a selective active site inhibitor of BCR::ABL1, in patients with previously treated CML

Parameter	All Patients ^a (N = 90)
Age, years, median (range)	58 (19-79)
Male / female	58%/42%
ECOG PS 0/1	74%/26%
Median time since diagnosis, months (range)	58.1 (2.6-281.9)
Typical BCR::ABL1 transcript (e13a2/e14a2)	93%
Baseline BCR::ABL1 transcript levelb	
≤ 0.1%	18%
> 0.1%- ≤1.0%	23%
> 1.0%	52%
Baseline BCR::ABL1 mutation (central)c	
No mutation	54%
T315I mutation	9% ^d
Other mutations	7%
Not available	30%

^aIncludes 3 re-enrolled patients (87 individual patients).

Parameter	All Patients ^a (N = 90)
Median number of prior unique TKIs, n (range)e	3 (1-7)
1–2 prior	32%
3–4 prior	41%
≥ 5 prior	26%
Prior TKI	
Dasatinib	73%
Imatinib	67%
Asciminib	58%
Nilotinib	54%
Ponatinib	43%
Bosutinib	38%
Reason for discontinuation of last TKI	
Lack of efficacy	72%
Lack of tolerability	23%
Other	3%
eMedian lines of prior TKIs is 4 (range 1-9).	

eMedian lines of prior TKIs is 4 (range 1-9).

BCR::ABL1 ≤ 0.1% (MMR) by 24 weeks				
Overall MMR by 24 weeks	25/53 (47%)			
Achieved (not in MMR at baseline)	13/41 (32%)			
Maintained (in MMR at baseline)	12/12 (100%)			
Key subgroups				
Post asciminib	9/28 (32%)			
Post ponatinib	7/20 (35%)			
Lack of efficacy to last TKI	14/34 (41%)			
Intolerant to last TKI	9/17 (53%)			

- 80% of patients remain on study with a median duration of exposure of 29 weeks
- 4 patients discontinued due to AEs:
 - Alcoholic pancreatitis (10 mg QD)
 - Thrombocytopenia (20 mg QD and 80 mg QD)
 - Dyspnea (80 mg QD; confounded by pulmonary comorbidities)

bPercentages based on 84 patients with typical transcript.

^cOnly available for patients with typical transcripts.

dIncludes 2 re-enrolled patients (6 individual patients with T315I).

Agenda

- Do we really need novel drugs in CML?
- Novel agents
- Combination therapies
- Old drugs, new doses
- Something even older...

Asciminib + TKIs: FASCINATION Study

Primary	endpoint:	MR4 at	month	12

Cohort	Patients recruited, n (%)	Patients eligible for MR at 12 mo, n (%)	Patients with MR4 at 12 mo, n (%)
NIL 300 mg BID + ASC 20 mg BID	30 (24)	28 (22)	9 (32)
NIL 300 mg BID + ASC mg 40 QD	32 (26)	31 (25)	13 (42)
DAS 100 mg QD + ASC 80 mg QD	32 (26)	27 (22)	9 (33)
IMA 400 mg QD + ASC 60 mg QD	31 (24)	28 (22)	12 (43)
Total	125 (100)	114 (91)	43 (38)

21 patients (17%) discontinued tx within 12 months due to AEs (n=18) or failure/progression (n=3)

Ernst T et al., EHA 2023

ASCENDANCE – standard risk

3 months 6 months BCR::ABL1 > 10% 6 months BCR::ABL1 > 10% 12 months BCR::ABL1 > 1% 18 months BCR::ABL1 > 1%

Asciminib 80mg QD + addition of dasatinib 50mg QD (Other acquired treatment resistance at physician discretion)
An alternative TKI may be substituted with TMC approval

 BCR::ABL1
 BCR::ABL1
 BCR::ABL1

 1.001 - 10%
 0.101 - 1%
 0.011 - 1%

Asciminib 80mg BID Physician discretion

BCR::ABL1 ≤ 10% | BCR::ABL1 ≤ 1% | BCR::ABL1 ≤ 0.1% | BCR::ABL1 ≤ 0.01%

Asciminib 80mg QD

Standard risk No AGA No high risk ACA

Asciminib 80mg QD

Courtesy of N. Shanmuganathan

Nilotinib + Peginterferon: TIGER Study

Responses % (95% CI)	Nilotinib	Nilotinib + Peg-IFN	P
At 12 mo of therapy			
MMR	76 (72-81)	83 (79-87)	0.035
At 18 mo of therapy			
MMR	81 (76-85)	88 (83-91)	0.021
MR4	51 (46-57)	64 (58-69)	0.0018
MMR at 12 mo of discontinuation	60 (53-67)	69 (60-76)	0.12
MMR at 24 mo of discontinuation	48 (40-56)	57 (48-65)	0.13
8-year PFS	94 (90-96)	92 (88-95)	n.s.
8-year OS	95 (92-97)	94 (91-97)	n.s.

Nilotinib + Peginterferon: PETALS Study

Endpoints, %	Nilotinib	Nilotinib + Peg-IFN	P
MR4.5 by 12 mo	16	22	0.049
Overall cumulative incidence of MR4.5	44	55	0.05

Nicolini FE et al., ASH 2021

Dasatinib + Venetoclax

Jabbour E et al. Cancer 2024

TKIs + Ruxolitinib

- 75 patients with CML-CP; median time on prior TKI = 3.2 years
- Detectable BCR::ABL1 transcripts [0.0032-1%]
- At least 6 months on last TKI (DAS 61%; NIL 19%; BOS 10%; IMA 9%); >2 TKIs allowed
- Randomized to continue TKI (N=38) or add ruxolitinib 15 mg BID for 12 months (N=37)

Treatment Arm	TKI only (N=38)	Ruxolitinib + TKI (N=37)	P
12-month MR4.5	3%	14%	0.09
12-month cumulative MR4.0	37%	63%	0.048
NCCN criteria for TKI discontinuation met	11%	29%	0.08
Grade 3-4 related AEs	5% (2/38)	11% (4/37)	NA

Sweet Ket al. EHA 2024

Agenda

- Do we really need novel drugs in CML?
- Novel agents
- Combination therapies
- Old drugs, new doses
- Something even older...

Dose modification dynamics of ponatinib in patients with chronic-phase chronic myeloid leukemia (CP-CML) from the PACE and OPTIC trials

Trial Design

 Outcomes for patients with CP-CML who received ponatinib 45 mg/day in the PACE (n=270) and OPTIC (n=94) trials were assessed to evaluate the dose-response relationship and effect on ponatinib safety using 2-year data cutoffs

 A propensity score analysis was used to control for potential bias from differences in baseline demographics and characteristics, disease parameters, and drug exposure comparing AOE rates across both trials

Conclusion

 The response-based dose-reduction strategy in OPTIC provided comparable or higher efficacy than a fixed-dose approach while mitigating AE and AOE risk in patients receiving ponatinib

Results

- A greater proportion of patients had dose reductions due to AEs in PACE (65%) vs OPTIC (45%), with median time to dose reduction 2.9 vs 3.6 months
- Median dose intensity at 24 months: PACE: 30 mg/day; OPTIC, 15 mg/day

- Median time to ≤1% BCR::ABL1^{IS}: 5.6 vs 6.0 months in PACE vs OPTIC, with median duration of response not reached in either trial
- 2-year PFS was 80% in OPTIC and 67% in PACE; 2-year OS was 88% in PACE and 91% in OPTIC
- Rates were similar regardless of T315I mutation status

- Rate of grade 3/4 treatment-emergent AEs was higher in PACE (84%) than in OPTIC (68%)
- Grade 3-4 treatment-emergent AOEs occurred in 12% of patients in PACE and 5% in OPTIC
- The propensity score analysis showed an overall risk reduction of approximately 60% for AOEs in OPTIC compared with PACE

Jabbour E et al. Leukemia 2024

Low-Dose Dasatinib in Frontline CML

83 patients with newly diagnosed CML-CP received **dasatinib 50 mg daily** Patients in suboptimal response increased dose of up to 100 mg daily

Response, %	12 Mo (n = 81)	24 Mo (n = 81)	60 Mo (n = 81)
CCyR	94	95	98
MMR	79	90	95
MR4	52	70	83
MR4.5	43	63	82
CMR	22	44	70

5-Yr Survival, % (95% CI)	Patients (n = 81)	
OS	98 (94.6-100)	
EFS	92 (85.6-98.4)	
TFS	100	
FFS	86.2 (78.4-94)	

Naqvi K et al. *Cancer* 2020 Gener-Ricos G et al, ASH 2022

Low-Dose Dasatinib in Frontline CML

AEc = (0/)	Patients (n = 81)	
AEs, n (%)	Any Grade	Grade 3/4
Hematologic Leukopenia Neutropenia Anemia Thrombocytopenia	31 (38) 23 (28) 54 (67) 27 (33)	1 (1) 6 (7) 4 (5) 5 (6)
Hyperbilirubinemia	5 (6)	0
Increased ALT	53 (65)	2 (2)
Increased ALP	creased ALP 11 (13) 0	
Increased creatinine	15 (18)	0

AEs, n (%)	Patients (n = 81)		
AES, II (70)	Any Grade	Grade 3/4	
Fatigue	11 (13)	0	
Musculoskeletal	6 (7)	0	
Gastrointestinal	2 (2)	0	
Skin	2 (2)	0	
CV/pulmonary	0	1 (1)	
Neurologic	3 (2)	1 (1)	
Edema	3 (2)	1 (1)	
Pleural effusion	10 (12)	2 (2)	

Naqvi K et al. *Cancer* 2020 Gener-Ricos G et al, ASH 2022

Low-Dose Bosutinib strategies in CML

Castagnetti F et al., EHA 2022

Table 1. Treatment status and reasons for discontinuation in study patients

2-3L

	n (%)	
Received treatment	35	(100)
Continued treatment	26	(74.3)
Discontinued treatment	9	(25.7)
Drug-related adverse event	4	(11.4)
Treatment failure or Disease progressed	2	(5.7)
Withdrew consent	2	(5.7)
Other	1	(2.9)

Figure 1. Efficacy of bosutinib treatment

Ureshino H et al., ASH 2023

Agenda

- Do we really need novel drugs in CML?
- Novel agents
- Combination therapies
- Old drugs, new doses
- Something even older...

Allo-HCT for CML in Europe (EBMT)

Passweg et al. BMT 2018

Actual "indications" for allo-HCT

- CML in advanced phases: BC «always», AP «often»
- > Failure to multiple lines of TKI therapy (≥2? ≥3?)
- wunacceptable» TKI toxicity, mainly hematologic (cytopenias)
- Extremely young patients (?)

•••

Conclusions

- > Patients in A/BP have poor prognosis
- > Failure to 2G-TKI or multiple TKIs may be challenging, with reduced OS
- Novel TKIs are entering the clinical arena
- > Results of combos (TKI + TKI or TKI + «other») are preliminar
- > TKIs at reduced dose could be equally effective but safer: however, no large trials have been performed yet
- > Do not forget the transplant option in selected cases!

per aspera ad astra mario.tiribelli@uniud.it